
View-Concepts: Persistent Storage for Planning and Scheduling1

Jon A. Pastor Donald P. McKay
 (610) 648-2769 (610) 648-2256

pastor@vfl.paramax.com mckay@vfl.paramax.com
Unisys Government Systems Group

Valley Forge Engineering Center
Research and Development

PO Box 517
Paoli, PA 19301

Abstract

Semantic data models for database systems provide powerful tools to assist database administrators in
designing and maintaining schemas, but provide little or no direct support for users of the database. Some
research has been done on mapping user models of a domain to the underlying database using semantic
schemas. Little has been done, however, on mapping conceptually meaningful data structures to a database
lacking a semantic schema, or to a multi-database system that lacks a consistent semantic schema. We argue
for the appropriateness of a knowledge representation language for describing the database schema, user
data structures, and the mapping between them; present a problem domain in which an existing relational
database without a semantic schema must be accessed by a knowledge-based application; and describe our
implementation of a system that provides access to a relational database from LOOM, a KL/ONE-style
knowledge representation language. With this background, we highlight recently-added capabilities of the
implementation, and provide detailed examples.

1. Introduction

The integration of atificial intelligence (AI) and database management system (DBMS) technologies promises to play
a significant role in shaping the future of computing. As noted in [7], AI/DB integration is crucial not only for next-
generation computing, but also for the continued development of DBMS technology and, in many cases, for the
effective application of AI technology. The motivations driving the integration of these two technologies include the
need for
• access to large amounts of shared data for knowledge and information processing,
• efficient management of knowledge as well as data, and
• intelligent processing of data.

In addition, AI/DB integration at Unisys was motivated by the desire to preserve the substantial investment in most
existing, or legacy, databases. To that end, our integration technology supports the use of existing DBMSs as
independent system components. Finally, the development of large-scale, heterogeneous, distributed AI systems
involving a number of discrete cooperating agents, as well as a general need to retain results of AI processes for the
long-term, have led to a need for persistent storage of knowledge to permit knowledge sharing among those agents.
Some work has been done toward implementing a view-object model [15] on relational DBs for which a semantic
schema exists. In particular, Barsalou and Wiederhold [3,4] describe a system based on an extended entity-
relationship model. Barsalou and Wiederhold provide algorithms that assure that objects are retrievable, and, if
desired, updatable. The View-Concept model described here is intended as a knowledge-based extension of the
view-object model; it also draws upon work done at Unisys on an Ingres DB interface for the CYC KRS [12] and on
the Cache-based Intelligent Database Interface (CIDI) [11]. We have implemented a prototype system for Loom
called the Loom Interface Module (LIM).

1This work is supported by Rome Laboratory and the Advanced Research Projects Agency under USAF
contracts F30602-91-C-0040 and F30602-93-C-0028. The views and conclusions are the authors’ and should
not be interpreted as the official opinion or conclusions of the US Government, the USAF, Rome Laboratory,
or ARPA.

mailto:pastor@vfl.paramax.com
mailto:mckay@vfl.paramax.com

LIM is being developed in the context of the ARPA/Rome Lab Planning Initiative (PI) a multi-site project whose
goal is the development and introduction of a knowledge-based system to support military logistics planning for the
United States Transportation Command, which is responsible for planning large-scale movements of troops and
materiel. Our project addresses the task of interfacing a knowledge representation system to a collection of legacy
databases that lack a coherent semantic schema. There is also a need to share data derived by one among a group of
AI systems with other systems, either in real-time or at a later time.
Related work within the ARPI is being performed by groups at ISI [1,2] and UCLA [8]. ISI’s SIMS (Services and
Information Management for Decision Systems) is designed to map the queries of users, who are presumed to be
ignorant of the structure and content of a collection of databases, into retrievals against those databases. UCLA’s
COBASE (Cooperative Database) is a knowledge-based extension to standard relational query languages (e.g., SQL)
that provides approximate operators supporting query relaxation and approximate answers.

2. Architecture

LIM acts as an intermediary between a Loom application and one or more DBs. The inter-relationships among the
various components of the overall system are illustrated in Figure 1. LIM reads the DB schema, building a Loom
representation of the schema based on this information. Subsequently, in response to a query or update request from
a Loom application that requires access to the DB, LIM parses the request and generates the appropriate data
manipulation language (DML) statements for the DBMS; in the case of a query, it then processes the tuples returned
to it into the form requested by the application. Processing within LIM is directed by a multi-layer KB architecture
that is built in a mixed-initiative process. Figure 2 depicts the layers in this architecture.
The Semantic Mapping KB (SMKB) is an isomorphic representation of the DB schema. It is constructed by a
Knowledge Base Administrator (KBA) — analogous to the database administrator for a DB — from an auto-
matically-generated schema model. LIM creates this schema model by reading the DB schema; based on this
information, it defines one Loom concept for each table and one Loom relation for each column. The relation
representing each column is defined as a role on the concept representing the appropriate table, value-restricted to a
type that represents the DB type (domain) of the column; these DB types are typically simple types like integer and
string. The SMKB is created primarily by defining semantic types, and then substituting these for the simple DB
types that appear in the schema model. LIM stores information identifying the DB, table, and column with the

DB DBDB

CIDI

LIM

Loom
ApplicationLoom KB

Loom objects
and values

Queries
and updates

Tuples as Lisp
S-expressions

Loom objects
and values

Queries
and updates

Schema
information

Schema
information

Parsed queries
and updates

Schema
information,
tuples

Schema
information,
tuples

DML queries
and updates

(e.g., SQL)
Schema
information,
tuples

DML queries
and updates

(e.g., SQL)

DML queries
and updates

(e.g., SQL)

Figure 1: LIM Overview

concepts and relations in the SMKB.
Application KBs (AKBs) refer to concepts and relations in the SMKB. Unlike concepts in the SMKB, which are
isomorphic to tables in the DB, and which presently have no hierarchical structure, concepts in the AKB do not
necessarily map in any simple way to the tables in the DB, and can have arbitrary hierarchical structure. Connections
to the DB are implemented via DB-mapping declarations, in which a concept-role pair in the AKB is mapped to a
SMKB role.

3. Operation

LIM, given a query or update request involving a concept in the SMKB or AKB,
• obtains schema mapping information from the SMKB;
• translates the request into an equivalent DML statement which it submits the statement to the DBMS and

assembles the result; and
• for a query, restructures the returned tuples as necessary, generating any KB structures required to satisfy the

query.

With regard to the last point, a fundamental principle of LIM is that KB structures are created only on demand:
queries are satisfied without creation of KB objects whenever possible, to minimize overhead and bookkeeping.
Control over object creation is entirely at the discretion of the application.
The processing performed by LIM is illustrated in Figure 3.
3.1 Schema Generation

As described above, when a DB is opened, schema generation module reads the schema information . The this
information, and generates one Loom concept per table and one Loom relation per column. The relations
corresponding to the columns of a table are then added as roles of the corresponding concept via value-restrictions.
3.2 Schema Augmentation

The automatically-generated schema model is a literal representation of the DB schema. One implication of this is
that the semantics of relationships among tables are not explicit, since the schema does not identify the columns in
the DB over which joins are semantically reasonable. In creating the SMKB, the KBA augments this literal schema
representation by defining semantic types to explicate the semantics of joins. In particular, where two relations
represent columns over which a join is semantically reasonable, the value restrictions on these relations in their
respective concepts are changed to the same KB type. For example, two DB columns whose DB type is integer, but

seaports.
port_name

name latitude

geoloc.
glc_cd geoloc.

glc_ltcn
seaports.

glc_cd

Semantic
Mapping

KB
(SMKB)

External
Database

primary-
port-name lat

Application
KB

(AKB)

geoloc-code

Seaport

lon

geoloc.
glc_ltcn

longitude

glc_ltcn glc_lncnglc_cd

GEOLOC

glc_cdport_name ...

SEAPORTS

...cy_cd

GEOLOCSEAPORTS

Figure 2: LIM Knowledge Base Architecture

which both represent a particular kind of identification number, would have their value restrictions specialized to a
concept representing that kind of identification number.
In addition to modification of role value restrictions, it is usually desirable to represent the structural semantics of the
domain more closely than is possible in the relational model. Such restructuring may be specified in the AKB by
defining View-Concepts and mapping their roles to those of SMKB concepts. When such semantic restructuring
takes place, it is necessary to ensure that the proposed structures are retrievable, and — if desired — updatable.
Retrievability requires that all participating tables can be joined, and that sufficient information (e.g., keys) is
preserved in the semantic representation to permit unambiguous access of all necessary tuples. Updatability requires
that all key, index, and non-null columns in the DB tables underlying a View-Concept in the AKB are included in the
View-Concept.
Retrievability of a View-Concept is assured via a mixed-initiative dialog, in which the system computes all
semantically meaningful ways of joining all of the DB tables required for the construction of a View-Concept; if
there is more than one such alternative, LIM presents them for selection by the user. It is not possible for the system
to compute join paths without user intervention, since any given pair of tables might be joinable in several ways, not
all of which are semantically equivalent.
Updatability of View-Concepts, when required, is checked automatically by the system. If any necessary information
is unavailable in the view, the system identifies the missing information, and suggests that it be added to the model.
3.3 Query Translation
Given a LIM query, the query translation module:
• identifies variables in the query corresponding to Loom relations that are derived from the DB,
• identifies variables in the query corresponding to Loom concepts having roles derived from the DB, and
• constructs a DML query and submits it to the CIDI for processing against the DB.

If the query requests the return of Loom objects, rather than just values from the DB, the DML query will select and
return values in each tuple to permit generation of the appropriate Loom objects.
3.4 Update
The design of a DB update facility for Loom is not as straightforward as might appear at first. In this section, we will
address the semantic issues involved in update; discussion of additional technical issues will be deferred to Section
4.3.
Loom instances can be constructed incrementally, by asserting the existence of the instance, and then subsequently
asserting facts about it. Furthermore, classification of an instance does not take place as a result of asserting its
existence, or asserting facts about it, but must be explicitly requested. In addition to the incremental nature of
instance creation, certain semantic requirements must be taken into consideration: as noted in Section 3.2, if an
instance is to be stored into a DB, an update cannot be performed unless sufficient information (e.g., values for keys
and indices) is available.
While it would be possible to determine when a user considered a given instance’s definition complete (i.e., when
classification is requested), or to determine the point at which sufficient information has been asserted about an
instance to permit storage in the DB, we saw no justification for presuming that either of these conditions should
necessarily imply that the user intended to make the instance in question persistent. We therefore chose to separate
instance creation from a request for storage in the DB.
When a user issues a request to store a DB-derived Loom instance, LIM verifies that it has values for all roles
mapped to key- and index-columns for underlying tables, as well as for all columns for which NULL values are not
permitted. If the instance contains all requisite information, the DB is modified via the CIDI. Note that a request to
store an instance of a View-Concept that draws information from more than one table may result in DB operations
against all such tables. Note also that the it must be decided, for each such table, whether to modify (update) an
existing tuple, or to create (insert) a new tuple. Both of these issues will be discussed in Section 4.3.
3.5 Object Generation

A LIM query consists of a list of output variables to be bound, and one or more statements (in a syntax similar to that
of the Loom assertional language) that produce sets of bindings for these variables. It is easily determined from the
positions of variables in the output list and the query expressions whether a particular output variable corresponds to
a role value or a concept. For a variable corresponding to a role value, the value retrieved from the DB can be

returned to the application, possibly with some conversion due to the differences between semantic types used in the
KB and simple DB types (cf. Section 4.2). For a variable corresponding to a concept, however, the application will
expect to have returned to it an instance of that concept; this requires that LIM be capable of creating Loom
instances using values retrieved from the DB. LIM’s object generation module extracts from the returned tuples all
values requested specifically for the purpose of building Loom objects, creates the objects, and returns them to the
application.

4. Technical Details

The descriptions in Section 2 glossed over several critical technical issues in the design, implementation, and
operation of LIM. Among these are caching, data inference, complexities in update, and Meta-View-Concepts.
4.1 Caching

LIM uses three different caching schemes, for two purposes. The first purpose is the conventional one of improving
performance; the second is related to preserving referential integrity in an Object-Oriented system. For improved
performance, LIM can make use of a results cache: LIM stores the result of every query it processes, indexed under
a canonicalized version of the internal representation of the query; if a subsequent query is translated to the same
canonical form, modulo variable names, the result from the earlier query is returned. Both of these can result in
dramatic performance increases, because DB execution time dominates total LIM processing time for all but the
largest of queries (as detailed in Section 5). A “hit” on the LIM results cache returns results almost intantaneously,
since the query need not even be translated and submitted to the CIDI, and a hit on the CIDI results cache incurs only
LIM translation time; in neither case will the DBMS be involved.
The caching used to assure referential integrity uses a similar mechanism, but for a completely different purpose.
When a user queries LIM for an instance of a View-Concept, and then subsequently queries for an instance with the
same key values, it is usually the case that s/he expects the same KB object to be returned in both cases. For this
reason, LIM checks the Loom instance database (ABox) prior to creating instances. Given an object query, after
submitting a query to the DB and receiving return values, LIM queries the Loom ABox before creating a new
instance. If the View-Concept that is to be the type for the instance has keys defined, LIM uses these (in conjunction
with Loom’s indexing capabilities) to speed the seach; otherwise, all values are used.
Note that “ABox cache” checking is not an efficiency measure: on the contrary, it carries a performance penalty that
can become significant on extrememly large queries (many hundred to several thousand objects). For this reason, and
because of situations (like that of dynamic DB contents) where ABox cache checking is undesirable, it is controllable
both globally and at the individual query level.

4.2 Data Inference

Data values in a DB not are
necessarily in the form required
or desired for the KB. LIM
presently supports data value
rendering, which maps from
simple data values in the DB to
scalar KB types; e.g.,

 “M” |C|Military

Future releases of LIM will
support data object rendering,
which maps from simple data
values in the DB to instances of
concepts; e.g.,

“BSRL” |i|Bizerte(Geoloc)

where “BSRL” is the
GEOLOC_CODE for the
GEOLOC Bizerte.

LIM

CIDI

Loom KRS
model
created
automatically
from
schema

KBA
modifies
schema
model to
SMKB

KBA or
application
writer
creates
AKB

Loom KRS

schema
model

Loom KRS

SMKB

Loom KRS
AKB

SMKB

Loom
Application

Object
Generation

Query/
Update

Translation

Schema
Model

Generation
Schema

Augmentation

Request for
schema information

Schema
information

Queries and
update requests

Schema
mapping

information Loom
assertions

Values and
Loom
Objects

Loom
Definitions

Parsed queries and
update requests

Tuples as
LispS-expressions

Loom concept and
relations for query

Figure 3: LIM Internal Architecture and Processing

Finally, LIM will support data classification, which results in classification of instances in the KB after creation;
e.g.,

> (db-retrieve ?ship
 (:and (Ship ?ship)
 (name ?s “Constitution”)))

|i|Constitution(Frigate)

Here, it has been determined that the instance named “Constitution” is an instance of the concept Frigate, even
though the query specified the more general concept Ship.
4.3 Update Issues

Update of simple View-Concepts that are mapped to single DB tables is relatively straightforward and unambiguous:
if the View-Concept has roles mapped to all requisite columns of the underlying table (i.e., key-, index-, and no-
nulls-columns), and has values for all roles so mapped, tuples underlying it can be updated or inserted. The principal
subtlety in this case is determining whether an insert or update is appropriate. Our approach to making this
determination is to keep track, for each instance retrieved from the DB, of the values actually retrieved. When an
object is stored, LIM checks to see whether it was originally retrieved from the DB, and, if so, checks the current
values against those recorded originally. If the object was not retrieved from the DB, the request to store it will be
treated as an insert, and will succeed if there is no matching record in the DB. If the object was retrieved, and its key
values have changed, the store request will be treated as an insert; otherwise, if its values have changed, the store
request will be treated as an update, and if they have not, the request will be treated as a no-op.

When a View-Concept involves one or more joins, or has sub-View-Concepts (i.e., roles that are value-restricted to a
View-Concept), the situation becomes more complex. In either case, the View-Concept is only considered updatable
if all information required for the joins is stored in the View-Concept(s) involved; the complexity lies in the fact that
LIM has no control over which of the two (or more) columns involved in the join(s) are mapped to the View-
Concept, and it is typically the case that the values must be propagated to all of the relevant tables, even to columns
that are not DB-mapped by the View-Concept. In such cases, LIM must use information about joins and subview-
joins to propagate values from DB-mapped roles to both the SMKB roles to which they are mapped and those
representing the columns across which joins are required.

The other subtlety introduced with joins is the fact that not all component tables will necessarily require either update
or insert operations for all store requests. For example, short of the creation of a new seaport or airport, it is
extremely unlikely that any new GEOLOCs (the DB table used to represent geographic locations of all kinds in the
DB) would be created by any store request, and yet many application concepts in our domain contain information
drawn from (i.e., have roles DB-mapped to) the GEOLOC table; it will seldom, if ever, be the case that a request to
store an instance of one of these concepts should result in an update or insert to the GEOLOC table. Other, even
more extreme, examples of this include tables like the one for COUNTRY-CODES, which maps arbitrary country
codes to country names: it will seldom be the case that a routine update will want to add to, or modify, such tables.
4.4 Meta-View-Concepts

In addition to data about individual real-world objects like seaports and ships, some DBs (including those used by
the ARPI) contain data about classes of real-world objects. Examples of this include data about the dozens of types
of ships that are recognized. The need to represent this information in a domain model should be obvious; it should
also be obvious that it is inappropriate — and potentially dangerous from the standpoint of data integrity — to
permit this data to be manually encoded in the domain model. Furthermore, it is highly desirable — if not absolutely
critical — that information about classes of objects be accessible from the context of the objects themselves.
For this purpose, LIM supports a Meta-View-Concept facility. In Object-Oriented systems, the term metaclass is
typically used to describe classes whose instances are all classes: just as a class describes the structure (i.e., slots or
roles) of objects of that class, so a metaclass describes the structure of a class. In the case of ships, for example, a
ship meta-class would describe the structure of something that represents a collection of similar ships — i.e., a class
of ships — while a ship class would describe the attributes of something that represented an individual ship. While it
is possible, and in many cases reasonable, for a metaclass and its classes to share attributes, it is typical for each to
have attributes that are not meaningful for the other. For example, while it is reasonable that both ship classes and

ships share some common attributes such as length and draft, it is meaningless for ship classes — i.e., instances of
the ship metaclass — to have a hull-number attribute; and, while it is possible to represent the number of ships in its
class in the object representing each individual ship — i.e., as an attribute of individual ships, defined in ship classes
— it is clearly more appropriate to model this as an attribute of ship classes, defined at the ship metaclass.
LIM’s Meta-View-Concept facility provides the ability to define meta-level View-Concepts, and to retrieve data for
instances of these — i.e., View-Concepts — from the database. In addition to supporting queries about class-level
concepts — say, for the number of ships in a particular class — meta-View-Concepts provide the basis for a
mechanism implementing any of several varieties of defaults. For example, if an instance is missing a value for a
particular attribute, it may be quite reasonable to obtain a proxy value by default from the instance’s class; in the
case of a particular type of ship, if the length is missing from one instance, for example, it may be reasonable to use
the length value from the ship’s class in its place. It may also be reasonable to “inherit” class-level values, such as
the number of ships in a class, at the instances.

5. Performance

Early versions of LIM performed quite reasonably with value queries and simple object queries; LIM overhead —
execution time attributable to LIM — was less than 20 percent of total execution time. However, performance
degraded significantly as the number of objects returned increased. For example, retrieving one object with
approximately 115 sub-objects (i.e., role fillers whose type is a View-Concept) took over one minute; furthermore,
the ABox cache check (cf. Section 4.1) took over half of the total time for the query. Analysis of these results led us
to make radical changes in the ABox cache checking algorithms, as well as the LIM translation logic. As a result,
worst-case performance was improved by more than an order of magnitude, while variation in execution times was
reduced similarly.

 6. Example

To illustrate the processes described in Section 3, we present a small, fairly simple example. Let us presume that an
application requires information about the location of various seaports. In the USTRANSCOM databases with which
we are working, information about seaports is stored in a table called SEAPORTS, and information about geographic
locations in a table called GEOLOC. The various KB layers representing the mapping from application to DB are
shown in Figure 2. Note that from a user’s perspective, the SMKB and DB pre-exist, and definition of application
concepts thus appears to be a top-down process; however, in order to illustrate the process of defining the mappings,
we will proceed bottom-up.
The bottom panel shows a simplified tabular representation of the schema definitions for the two tables, SEAPORTS
and GEOLOC. The middle panel shows the SMKB concepts representing the two tables. These were created by
modifying the value-restrictions in the Loom definitions automatically generated by the schema generation module.
For example, the initial Loom concept definition for the portion of the GEOLOC table shown is:

(defconcept Geoloc
 :is-primitive
 (:and db-concept
 (:the Geoloc.Glc_cd String)
 (:the Geoloc.glc_lncn Number)
 (:the Geoloc.glc_ltcn Number)))

Note that role value restrictions correspond to the simple data types (e.g., string, number) that appear in relational
databases. This definition is modified by the KBA to produce the SMKB definition:

(defconcept Geoloc
 :is-primitive
 (:and db-concept
 (:the Geoloc.Glc_cd Geoloc_Code)
 (:the Geoloc.glc_lncn Longitude)
 (:the Geoloc.glc_ltcn Latitude)))

For example, the role of Geoloc that corresponds to the column glc_cd has type string; this has been modified in the
SMKB to geoloc_code. This permits LIM to infer that Seaports and Geoloc can be joined over their glc_cd roles.

Loom definitions for the semantic type hierarchies above the types used in Geoloc are:

(Defconcept Identifier :Is-Primitive Thing)
(Defconcept Code :Is-Primitive
 (:and String Identifier))
(Defconcept Location :Is-Primitive Code)
(Defconcept Geoloc_Code :Is-Primitive Location)
(Defconcept Measured_Qty :Is-Primitive Number)
(Defconcept Degrees :Is-Primitive Measured_Qty)
(Defconcept Latitude :Is-Primitive Degrees)
(Defconcept Longitude :Is-Primitive Degrees)

Finally, the top panel shows a simple application-level concept derived from information in both DB tables. The
following is the Loom concept definition for the AKB concept seaport, which was created manually:

(defconcept seaport
 :is-primitive
 (:and View-Concept
 (:the primary-port-name string)
 (:the lat latitude)
 (:the lon longitude)))

This is mapped to the DB by making the following declarations, which are stored as assertions in the Loom KB:

(def-db-mapping primary-port-name seaport seaports.port_name)
(def-db-mapping lat seaport
 geoloc.glc_ltcn)
(def-db-mapping lon seaport
 geoloc.glc_lncn)

Queries can be posed against either the SMKB or the AKB. (Note: the names used in the following examples have
been changed; we have not yet obtained permission to publish the data in our test database.) For example, the query:

(db-retrieve (?name)
 (:and
 (Seaports ?port)
 (Geoloc ?geoloc)
 (Seaports.Glc_cd ?port ?geocode)
 (Geoloc.Port_Code ?geoloc ?geocode)
 (Seaports.port_name ?port ?name)
 (Geoloc.Country_State_Code ?geoloc “DP”)
 (Seaports.Clearance_Rail_Flag ?port “Y”)))

(“What are the names of seaports in Dogpatch that have railroad capabilities at the port?”) can be posed against the
SMKB. The SQL generated by LIM and the CIDI for this query is:

SELECT DISTINCT RV1.name
FROM SEAPORTS RV1, GEOLOC RV2
WHERE RV2.glc_cd = RV1.glc_cd
 AND RV2.country_state_code = ‘DP’
 AND RV1.clearance_rail_flag = ‘Y’

The values returned are:

(“Cair Paravel” “Minas Tirith” “Coheeries Town”
 “Lake Woebegon” “Oz”)

The query:

(db-retrieve ?port
 (:and
 (seaport ?port)
 (primary-port-name ?port “Oz”)))

(“Return a seaport object for the port whose name is ‘Oz’”) can be posed against the AKB. The SQL generated by
LIM and the CIDI for this query is:

SELECT DISTINCT RV1.name,
 RV2.latitude,
 RV2.longitude
FROM SEAPORTS RV1, GEOLOC RV2
WHERE RV2.glc_cd = RV1.glc_cd
 AND RV1.name = ‘Oz’

The value returned by this query is an object whose Loom definition is:

(TELL
 (:ABOUT SEAPORT59253
 SEAPORT
 (LON 98.6)
 (LAT 3.14159)
 (PRIMARY-PORT-NAME “Oz”)))

7. Status

Our current system is implemented in Lucid Common Lisp and runs on a SUN SPARCstation 2. LIM uses both the
CIDI [11] and the Loom knowledge representation language [10]. The CIDI uses one of several protocols to access
Oracle databases on a remote server. LIM can be used either in a stand-alone Lisp image, or via a client-server
architecture.
The present released version of LIM supports all definition and retrieval operations, as well as update of SMKB
concepts and simple View-Concepts, and basic Meta-View-Concept functionality. The present development version
of LIM includes the basic functionality of update of complex View-Concepts (i.e., those requiring joins); this version
should be released by the time of the publication of this paper.
Several other participants in the ARPI — including ISI, ISX, UCLA, MITRE, and BBN — are presently using LIM.
All of these are using LIM internally as a stand-along Lisp image, but most are also using LIM via a client-server
architecture from a remote site, typically accessing one or more servers at Unisys.
In addition, groups at ISI and UCLA have integrated LIM with SIMS [1,2] and CoBASE [8]; the combined systems
provide integration of access to multiple sources, approximate queries and answers, and fault tolerant knowledge
base access to databases. The LIM/CoBASE/SIMS system has been used in both local-Lisp-image and client/server
realizations; the ultimate objective of the joint project is to have a fully-distributed, multi-database system in
operation.

8. Conclusion

We have described a View-Concept model which uses a knowledge representation language, Loom, to define the
semantic schema of a database. This definition has two levels, each of which is of utility to a knowledge-based
application. Both are based on a verbatim model of the database; for legacy databases, this can be generated
automatically from the database schema, and can be used by any knowledge-based application which would assist a
knowledge base administrator in the development of the semantic mapping layer (i.e., a knowledge-based semantic
schema).
The semantic mapping layer defines the relevant concepts supported by the database domain; in our current
knowledge bases, the semantic mapping layer adds semantic types to the automatically-generated schema model. We
envision additional information in the semantic mapping layer, including composites of database objects which form
larger conceptual structures.

Finally, the View-Concept model includes an application-specific layer that defines the mapping between an
application domain’s conceptual structures and the semantic definition of database concepts. We believe that the
structured approach embodied in the View-Concept model significantly elucidates the knowledge-base-to-database
interface problem. Further, we expect that grounding the implementation in the CIDI will support reasonable
performance.
Our preliminary implementation includes algorithms for properly defining objects to determine retrievability and
updatability, as well as retrievals against a database. In the coming year, we will be developing a more sophisticated
application for the military transportation logistics domain using LIM. We expect feedback from this experience
primarily to concern the completeness of the application knowledge base, and to give us valuable performance data.

9. Acknowledgments

The authors wish to acknowledge the contributions of the Unisys team, specifically Rebecca Davis, Robin McEntire,
Rich Fritzson, Tim Finin, and Barry Silk (US Government). Earlier contributors to the first version of the Intelligent
Database Interface include Tony O’Hare, currently at IBM, Research Triangle, and Larry Travis of the University of
Wisconsin. Finally, we acknowledge the useful comments and suggestions of users od LIM specifically Yigal Arens
and Craig Knoblock of USC ISI, Wes Chu, Berthier Ribiero and Galdys Chow of UCLA, Nancy Lehrer, Mark
Hoffman and Louis Rumanes of ISX, and, Glenn Abrett and Mark Hoffman of BBN.

10. References

[1] Yigal Arens, “Services and Information Management for Decision Support,” AISIG-90: Proceedings of the
Annual AI Systems in Government Conference, George Washington University, Washington, DC, May, 1990.

[2] Yigal Arens, “Planning and Reformulating Queries for Semantically-Modeled Multidatabase Systems,”
Proceedings of the First International Conference on Information and Knowledge Management, Baltimore,
MD, November, 1992.

[3] Thierry Barsalou and Gio Wiederhold, “Applying a Semantic Model to an Immunology Database,” 1987.

[4] Thierry Barsalou, “An Object-Based Architecture for Biomedical Expert Database Systems,” 1988.

[5] Thierry Barsalou, Arthur M, Keller, Niki Siambela, and Gio Wiederhold, “Updating Relational Databases
through Object-Based Views,” ACM, 1991.

[6] Ronald Brachman and James Schmolze, “An Overview of the KL/ONE Knowledge Representation System,”
Cognitive Science 9, 1985, pages 171–216.

[7] M. Brodie, J. Mylopoulos, and J. W. Schmidt, editors, On Conceptual Modelling: Perspectives from Artificial
Intelligence, Databases, and Programming Languages, Springer-Verlag, 1984.

[8] Wesley W. Chu, Andy Y. Hwang, Rei-Chi Lee, Qiming Chen, Matthew Merzbacher, and Herbert Hecht,
“Fault Tolerant Distributed Database System via Data Inference,” Proceedings of the Ninth Symposium on
Reliable Distributed Systems, Huntsville, Alabama, October 9–11, 1990.

[9] R. Kowalski, Logic for Problem Solving, Elsevier, 1979.

[10] Robert MacGregor and Robert Bates, “The Loom Knowledge Representation Language,” Proceedings of the
Knowledge-Based Systems Workshop, April 1987.

[11] Don McKay, Tim Finin, and Anthony O'Hare, “The Intelligent Database Interface,” Proceedings of the 7th
National Conference on Artificial Intelligence, 1990.

[12] G. Christian Overton, Kimberle Koile, and Jon A. Pastor, “GeneSys: A Knowledge Management System for
Molecular Biology,” Computers and DNA, Santa Fe Institute, G. Bell and T. Marr, editors, Addison-Wesley,
Reading, MA, 1990.

[13] Michael Stonebraker and Larry Rowe, The Postgres Papers, University of California, Berkeley, 1987.

[14] Gio Wiederhold and R. ElMasri, “The Structural Model for Database Design,” in Entity-Relationship
Approach to System Analysis and Design, pages 237–257, North Holland, 1980.

[15] Gio Wiederhold, “Views, Objects, and Databases,” IEEE Computer, Vol. 19, no. 12, December 1986, pages
37–44.

