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Abstract 

Semantic data models for database systems provide powerful tools to assist database administrators in 
designing and maintaining schemas, but provide little or no direct support for users of the database. Some 
research has been done on mapping user models of a domain to the underlying database using semantic 
schemas. Little has been done, however, on mapping conceptually meaningful data structures to a database 
lacking a semantic schema, or to a multi-database system that lacks a consistent semantic schema. We argue 
for the appropriateness of a knowledge representation language for describing the database schema, user 
data structures, and the mapping between them; present a problem domain in which an existing relational 
database without a semantic schema must be accessed by a knowledge-based application; and describe our 
implementation of a system that provides access to a relational database from LOOM, a KL/ONE-style 
knowledge representation language. With this background, we highlight recently-added capabilities of the 
implementation, and provide detailed examples. 

1. Introduction 

The integration of atificial intelligence (AI) and database management system (DBMS) technologies promises to play 
a significant role in shaping the future of computing. As noted in [7], AI/DB integration is crucial not only for next-
generation computing, but also for the continued development of DBMS technology and, in many cases, for the 
effective application of AI technology. The motivations driving the integration of these two technologies include the 
need for 
• access to large amounts of shared data for knowledge and information processing, 
• efficient management of knowledge as well as data, and 
• intelligent processing of data. 

In addition, AI/DB integration at Unisys was motivated by the desire to preserve the substantial investment in most 
existing, or legacy, databases. To that end, our integration technology supports the use of existing DBMSs as 
independent system components. Finally, the development of large-scale, heterogeneous, distributed AI systems 
involving a number of discrete cooperating agents, as well as a general need to retain results of AI processes for the 
long-term, have led to a need for persistent storage of knowledge to permit knowledge sharing among those agents. 
Some work has been done toward implementing a view-object model [15] on relational DBs for which a semantic 
schema exists. In particular, Barsalou and Wiederhold [3,4] describe a system based on an extended entity-
relationship model. Barsalou and Wiederhold provide algorithms that assure that objects are retrievable, and, if 
desired, updatable. The View-Concept model described here is intended as a knowledge-based extension of the 
view-object model; it also draws upon work done at Unisys on an Ingres DB interface for the CYC KRS [12] and on 
the Cache-based Intelligent Database Interface (CIDI) [11].  We have implemented a prototype system for Loom 
called the Loom Interface Module (LIM). 
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LIM is being developed in the context of the ARPA/Rome Lab Planning Initiative (PI) a multi-site project whose 
goal is the development and introduction of a knowledge-based system to support military logistics planning for the 
United States Transportation Command, which is responsible for planning large-scale movements of troops and 
materiel.  Our project addresses the task of interfacing a knowledge representation system to a collection of legacy 
databases that lack a coherent semantic schema. There is also a need to share data derived by one among a group of 
AI systems with other systems, either in real-time or at a later time. 
Related work within the ARPI is being performed by groups at ISI [1,2] and UCLA [8]. ISI’s SIMS (Services and 
Information Management for Decision Systems) is designed to map the queries of users, who are presumed to be 
ignorant of the structure and content of a collection of databases, into retrievals against those databases. UCLA’s 
COBASE (Cooperative Database) is a knowledge-based extension to standard relational query languages (e.g., SQL) 
that provides approximate operators supporting query relaxation and approximate answers. 
 

2. Architecture 

LIM acts as an intermediary between a Loom application and one or more DBs. The inter-relationships among the 
various components of the overall system are illustrated in Figure 1. LIM reads the DB schema, building a Loom 
representation of the schema based on this information. Subsequently, in response to a query or update request from 
a Loom application that requires access to the DB, LIM parses the request and generates the appropriate data 
manipulation language (DML) statements for the DBMS; in the case of a query, it then processes the tuples returned 
to it into the form requested by the application. Processing within LIM is directed by a multi-layer KB architecture 
that is built in a mixed-initiative process. Figure 2 depicts the layers in this architecture. 
The Semantic Mapping KB (SMKB) is an isomorphic representation of the DB schema. It is constructed by a 
Knowledge Base Administrator (KBA) — analogous to the database administrator for a DB — from an auto-
matically-generated schema model. LIM creates this schema model by reading the DB schema; based on this 
information, it defines one Loom concept for each table and one Loom relation for each column. The relation 
representing each column is defined as a role on the concept representing the appropriate table, value-restricted to a 
type that represents the DB type (domain) of the column; these DB types are typically simple types like integer and 
string. The SMKB is created primarily by defining semantic types, and then substituting these for the simple DB 
types that appear in the schema model. LIM stores information identifying the DB, table, and column with the 
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Figure 1: LIM Overview 



concepts and relations in the SMKB. 
Application KBs (AKBs) refer to concepts and relations in the SMKB. Unlike concepts in the SMKB, which are 
isomorphic to tables in the DB, and which presently have no hierarchical structure, concepts in the AKB do not 
necessarily map in any simple way to the tables in the DB, and can have arbitrary hierarchical structure. Connections 
to the DB are implemented via DB-mapping declarations, in which a concept-role pair in the AKB is mapped to a 
SMKB role. 

3. Operation 

LIM, given a query or update request involving a concept in the SMKB or AKB, 
• obtains schema mapping information from the SMKB; 
• translates the request into an equivalent DML statement which it submits the statement to the DBMS and 

assembles the result; and 
• for a query, restructures the returned tuples as necessary, generating any KB structures required to satisfy the 

query. 

With regard to the last point, a fundamental principle of LIM is that KB structures are created only on demand: 
queries are satisfied without creation of KB objects whenever possible, to minimize overhead and bookkeeping. 
Control over object creation is entirely at the discretion of the application. 
The processing performed by LIM is illustrated in Figure 3. 
3.1 Schema Generation 

As described above, when a DB is opened, schema generation module reads the schema information . The this 
information, and generates one Loom concept per table and one Loom relation per column. The relations 
corresponding to the columns of a table are then added as roles of the corresponding concept via value-restrictions. 
3.2 Schema Augmentation 

The automatically-generated schema model is a literal representation of the DB schema. One implication of this is 
that the semantics of relationships among tables are not explicit, since the schema does not identify the columns in 
the DB over which joins are semantically reasonable. In creating the SMKB, the KBA augments this literal schema 
representation by defining semantic types to explicate the semantics of joins. In particular, where two relations 
represent columns over which a join is semantically reasonable, the value restrictions on these relations in their 
respective concepts are changed to the same KB type. For example, two DB columns whose DB type is integer, but 
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which both represent a particular kind of identification number, would have their value restrictions specialized to a 
concept representing that kind of identification number. 
In addition to modification of role value restrictions, it is usually desirable to represent the structural semantics of the 
domain more closely than is possible in the relational model. Such restructuring may be specified in the AKB by 
defining View-Concepts and mapping their roles to those of SMKB concepts. When such semantic restructuring 
takes place, it is necessary to ensure that the proposed structures are retrievable, and — if desired — updatable. 
Retrievability requires that all participating tables can be joined, and that sufficient information (e.g., keys) is 
preserved in the semantic representation to permit unambiguous access of all necessary tuples. Updatability requires 
that all key, index, and non-null columns in the DB tables underlying a View-Concept in the AKB are included in the 
View-Concept. 
Retrievability of a View-Concept is assured via a mixed-initiative dialog, in which the system computes all 
semantically meaningful ways of joining all of the DB tables required for the construction of a View-Concept; if 
there is more than one such alternative, LIM presents them for selection by the user. It is not possible for the system 
to compute join paths without user intervention, since any given pair of tables might be joinable in several ways, not 
all of which are semantically equivalent. 
Updatability of View-Concepts, when required, is checked automatically by the system. If any necessary information 
is unavailable in the view, the system identifies the missing information, and suggests that it be added to the model. 
3.3 Query Translation 
Given a LIM query, the query translation module: 
• identifies variables in the query corresponding to Loom relations that are derived from the DB, 
• identifies variables in the query corresponding to Loom concepts having roles derived from the DB, and 
• constructs a DML query and submits it to the CIDI for processing against the DB. 

If the query requests the return of Loom objects, rather than just values from the DB, the DML query will select and 
return values in each tuple to permit generation of the appropriate Loom objects. 
3.4 Update 
The design of a DB update facility for Loom is not as straightforward as might appear at first. In this section, we will 
address the semantic issues involved in update; discussion of additional technical issues will be deferred to Section 
4.3. 
Loom instances can be constructed incrementally, by asserting the existence of the instance, and then subsequently 
asserting facts about it. Furthermore, classification of an instance does not take place as a result of asserting its 
existence, or asserting facts about it, but must be explicitly requested. In addition to the incremental nature of 
instance creation, certain semantic requirements must be taken into consideration: as noted in Section 3.2, if an 
instance is to be stored into a DB, an update cannot be performed unless sufficient information (e.g., values for keys 
and indices) is available. 
While it would be possible to determine when a user considered a given instance’s definition complete (i.e., when 
classification is requested), or to determine the point at which sufficient information has been asserted about an 
instance to permit storage in the DB, we saw no justification for presuming that either of these conditions should 
necessarily imply that the user intended to make the instance in question persistent. We therefore chose to separate 
instance creation from a request for storage in the DB. 
When a user issues a request to store a DB-derived Loom instance, LIM verifies that it has values for all roles 
mapped to key- and index-columns for underlying tables, as well as for all columns for which NULL values are not 
permitted. If the instance contains all requisite information, the DB is modified via the CIDI. Note that a request to 
store an instance of a View-Concept that draws information from more than one table may result in DB operations 
against all such tables. Note also that the it must be decided, for each such table, whether to modify (update) an 
existing tuple, or to create (insert) a new tuple. Both of these issues will be discussed in Section 4.3. 
3.5 Object Generation 

A LIM query consists of a list of output variables to be bound, and one or more statements (in a syntax similar to that 
of the Loom assertional language) that produce sets of bindings for these variables. It is easily determined from the 
positions of variables in the output list and the query expressions whether a particular output variable corresponds to 
a role value or a concept. For a variable corresponding to a role value, the value retrieved from the DB can be 



returned to the application, possibly with some conversion due to the differences between semantic types used in the 
KB and simple DB types (cf. Section 4.2). For a variable corresponding to a concept, however, the application will 
expect to have returned to it an instance of that concept; this requires that LIM be capable of creating Loom 
instances using values retrieved from the DB. LIM’s object generation module extracts from the returned tuples all 
values requested specifically for the purpose of building Loom objects, creates the objects, and returns them to the 
application. 

4. Technical Details 

The descriptions in Section 2 glossed over several critical technical issues in the design, implementation, and 
operation of LIM. Among these are caching, data inference, complexities in update, and Meta-View-Concepts. 
4.1 Caching 

LIM uses three different caching schemes, for two purposes. The first purpose is the conventional one of improving 
performance; the second is related to preserving referential integrity in an Object-Oriented system. For improved 
performance, LIM can make use of a results cache: LIM stores the result of every query it processes, indexed under 
a canonicalized version of the internal representation of the query; if a subsequent query is translated to the same 
canonical form, modulo variable names, the result from the earlier query is returned. Both of these can result in 
dramatic performance increases, because DB execution time dominates total LIM processing time for all but the 
largest of queries (as detailed in Section 5). A “hit” on the LIM results cache returns results almost intantaneously, 
since the query need not even be translated and submitted to the CIDI, and a hit on the CIDI results cache incurs only 
LIM translation time; in neither case will the DBMS be involved.  
The caching used to assure referential integrity uses a similar mechanism, but for a completely different purpose. 
When a user queries LIM for an instance of a View-Concept, and then subsequently queries for an instance with the 
same key values, it is usually the case that s/he expects the same KB object to be returned in both cases. For this 
reason, LIM checks the Loom instance database (ABox) prior to creating instances. Given an object query, after 
submitting a query to the DB and receiving return values, LIM queries the Loom ABox before creating a new 
instance. If the View-Concept that is to be the type for the instance has keys defined, LIM uses these (in conjunction 
with Loom’s indexing capabilities) to speed the seach; otherwise, all values are used. 
Note that “ABox cache” checking is not an efficiency measure: on the contrary, it carries a performance penalty that 
can become significant on extrememly large queries (many hundred to several thousand objects). For this reason, and 
because of situations (like that of dynamic DB contents) where ABox cache checking is undesirable, it is controllable 
both globally and at the individual query level. 

4.2 Data Inference 

Data values in a DB not are 
necessarily in the form required 
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Finally, LIM will support data classification, which results in classification of instances in the KB after creation; 
e.g., 

> (db-retrieve ?ship  
  (:and (Ship ?ship) 
    (name ?s “Constitution”))) 
 
|i|Constitution(Frigate) 

Here, it has been determined that the instance named “Constitution” is an instance of the concept Frigate, even 
though the query specified the more general concept Ship.  
4.3 Update Issues 

Update of simple View-Concepts that are mapped to single DB tables is relatively straightforward and unambiguous: 
if the View-Concept has roles mapped to all requisite columns of the underlying table (i.e., key-, index-, and no-
nulls-columns), and has values for all roles so mapped, tuples underlying it can be updated or inserted. The principal 
subtlety in this case is determining whether an insert or update is appropriate. Our approach to making this 
determination is to keep track, for each instance retrieved from the DB, of the values actually retrieved. When an 
object is stored, LIM checks to see whether it was originally retrieved from the DB, and, if so, checks the current 
values against those recorded originally. If the object was not retrieved from the DB, the request to store it will be 
treated as an insert, and will succeed if there is no matching record in the DB. If the object was retrieved, and its key 
values have changed, the store request will be treated as an insert; otherwise, if its values have changed, the store 
request will be treated as an update, and if they have not, the request will be treated as a no-op.  

When a View-Concept involves one or more joins, or has sub-View-Concepts (i.e., roles that are value-restricted to a 
View-Concept), the situation becomes more complex. In either case, the View-Concept is only considered updatable 
if all information required for the joins is stored in the View-Concept(s) involved; the complexity lies in the fact that 
LIM has no control over which of the two (or more) columns involved in the join(s) are mapped to the View-
Concept, and it is typically the case that the values must be propagated to all of the relevant tables, even to columns 
that are not DB-mapped by the View-Concept. In such cases, LIM must use information about joins and subview-
joins to propagate values from DB-mapped roles to both the SMKB roles to which they are mapped and those 
representing the columns across which joins are required.  

The other subtlety introduced with joins is the fact that not all component tables will necessarily require either update 
or insert operations for all store requests. For example, short of the creation of a new seaport or airport, it is 
extremely unlikely that any new GEOLOCs (the DB table used to represent geographic locations of all kinds in the 
DB) would be created by any store request, and yet many application concepts in our domain contain information 
drawn from (i.e., have roles DB-mapped to) the GEOLOC table; it will seldom, if ever, be the case that a request to 
store an instance of one of these concepts should result in an update or insert to the GEOLOC table. Other, even 
more extreme, examples of this include tables like the one for COUNTRY-CODES, which maps arbitrary country 
codes to country names: it will seldom be the case that a routine update will want to add to, or modify, such tables.  
4.4 Meta-View-Concepts 

In addition to data about individual real-world objects like seaports and ships, some DBs (including those used by 
the ARPI) contain data about classes of real-world objects. Examples of this include data about the dozens of types 
of ships that are recognized. The need to represent this information in a domain model should be obvious; it should 
also be obvious that it is inappropriate — and potentially dangerous from the standpoint of data integrity — to 
permit this data to be manually encoded in the domain model. Furthermore, it is highly desirable — if not absolutely 
critical — that information about classes of objects be accessible from the context of the objects themselves. 
For this purpose, LIM supports a Meta-View-Concept facility. In Object-Oriented systems, the term metaclass is 
typically used to describe classes whose instances are all classes: just as a class describes the structure (i.e., slots or 
roles) of objects of that class, so a metaclass describes the structure of a class. In the case of ships, for example, a 
ship meta-class would describe the structure of something that represents a collection of similar ships — i.e., a class 
of ships — while a ship class would describe the attributes of something that represented an individual ship. While it 
is possible, and in many cases reasonable, for a metaclass and its classes to share attributes, it is typical for each to 
have attributes that are not meaningful for the other. For example, while it is reasonable that both ship classes and 



ships share some common attributes such as length and draft, it is meaningless for ship classes — i.e., instances of 
the ship metaclass — to have a hull-number attribute; and, while it is possible to represent the number of ships in its 
class in the object representing each individual ship — i.e., as an attribute of individual ships, defined in ship classes 
— it is clearly more appropriate to model this as an attribute of ship classes, defined at the ship metaclass. 
LIM’s Meta-View-Concept facility provides the ability to define meta-level View-Concepts, and to retrieve data for 
instances of these — i.e., View-Concepts — from the database. In addition to supporting queries about class-level 
concepts —  say, for the number of ships in a particular class — meta-View-Concepts provide the basis for a 
mechanism implementing any of several varieties of defaults. For example, if an instance is missing a value for a 
particular attribute, it may be quite reasonable to obtain a proxy value by default from the instance’s class; in the 
case of a particular type of ship, if the length is missing from one instance, for example, it may be reasonable to use 
the length value from the ship’s class in its place. It may also be reasonable to “inherit” class-level values, such as 
the number of ships in a class, at the instances. 

5. Performance 

Early versions of LIM performed quite reasonably with value queries and simple object queries; LIM overhead —
execution time attributable to LIM — was less than 20 percent of total execution time. However, performance 
degraded significantly as the number of objects returned increased. For example, retrieving one object with 
approximately 115 sub-objects (i.e., role fillers whose type is a View-Concept) took over one minute; furthermore, 
the ABox cache check (cf. Section 4.1) took over half of the total time for the query. Analysis of these results led us 
to make radical changes in the ABox cache checking algorithms, as well as the LIM translation logic. As a result, 
worst-case performance was improved by more than an order of magnitude, while variation in execution times was 
reduced similarly. 

 6. Example 

To illustrate the processes described in Section 3, we present a small, fairly simple example. Let us presume that an 
application requires information about the location of various seaports. In the USTRANSCOM databases with which 
we are working, information about seaports is stored in a table called SEAPORTS, and information about geographic 
locations in a table called GEOLOC. The various KB layers representing the mapping from application to DB are 
shown in Figure 2. Note that from a user’s perspective, the SMKB and DB pre-exist, and definition of application 
concepts thus appears to be a top-down process; however, in order to illustrate the process of defining the mappings, 
we will proceed bottom-up. 
The bottom panel shows a simplified tabular representation of the schema definitions for the two tables, SEAPORTS 
and GEOLOC. The middle panel shows the SMKB concepts representing the two tables. These were created by 
modifying the value-restrictions in the Loom definitions automatically generated by the schema generation module. 
For example, the initial Loom concept definition for the portion of the GEOLOC table shown is: 

(defconcept Geoloc 
 :is-primitive 
  (:and db-concept 
   (:the Geoloc.Glc_cd String) 
   (:the Geoloc.glc_lncn Number) 
   (:the Geoloc.glc_ltcn Number))) 

Note that role value restrictions correspond to the simple data types (e.g., string, number) that appear in relational 
databases. This definition is modified by the KBA to produce the SMKB definition: 

(defconcept Geoloc 
 :is-primitive 
  (:and db-concept 
   (:the Geoloc.Glc_cd Geoloc_Code) 
   (:the Geoloc.glc_lncn Longitude) 
   (:the Geoloc.glc_ltcn Latitude))) 

For example, the role of Geoloc that corresponds to the column glc_cd has type string; this has been modified in the 
SMKB to geoloc_code. This permits LIM to infer that Seaports and Geoloc can be joined over their glc_cd roles. 



Loom definitions for the semantic type hierarchies above the types used in Geoloc are: 

(Defconcept Identifier :Is-Primitive Thing) 
(Defconcept Code :Is-Primitive 
    (:and String Identifier)) 
(Defconcept Location :Is-Primitive Code) 
(Defconcept Geoloc_Code :Is-Primitive Location) 
(Defconcept Measured_Qty :Is-Primitive Number) 
(Defconcept Degrees :Is-Primitive Measured_Qty) 
(Defconcept Latitude :Is-Primitive Degrees) 
(Defconcept Longitude :Is-Primitive Degrees) 

Finally, the top panel shows a simple application-level concept derived from information in both DB tables. The 
following is the Loom concept definition for the AKB concept seaport, which was created manually: 

(defconcept seaport 
 :is-primitive 
  (:and View-Concept 
   (:the primary-port-name string) 
   (:the lat latitude) 
   (:the lon longitude))) 

This is mapped to the DB by making the following declarations, which are stored as assertions in the Loom KB: 

(def-db-mapping primary-port-name seaport seaports.port_name) 
(def-db-mapping lat seaport 
       geoloc.glc_ltcn) 
(def-db-mapping lon seaport 
       geoloc.glc_lncn) 

Queries can be posed against either the SMKB or the AKB. (Note: the names used in the following examples have 
been changed; we have not yet obtained permission to publish the data in our test database.) For example, the query: 

(db-retrieve (?name) 
 (:and 
  (Seaports ?port) 
  (Geoloc ?geoloc) 
  (Seaports.Glc_cd ?port ?geocode) 
  (Geoloc.Port_Code ?geoloc ?geocode) 
  (Seaports.port_name ?port ?name) 
  (Geoloc.Country_State_Code ?geoloc “DP”) 
  (Seaports.Clearance_Rail_Flag ?port “Y”))) 

(“What are the names of seaports in Dogpatch that have railroad capabilities at the port?”) can be posed against the 
SMKB. The SQL generated by LIM and the CIDI for this query is: 

SELECT DISTINCT RV1.name 
FROM SEAPORTS RV1, GEOLOC RV2 
WHERE RV2.glc_cd = RV1.glc_cd 
 AND RV2.country_state_code = ‘DP’ 
 AND RV1.clearance_rail_flag = ‘Y’ 

The values returned are: 

(“Cair Paravel” “Minas Tirith” “Coheeries Town” 
      “Lake Woebegon” “Oz”) 

The query: 



(db-retrieve ?port 
 (:and 
  (seaport ?port) 
  (primary-port-name ?port “Oz”))) 

(“Return a seaport object for the port whose name is ‘Oz’”) can be posed against the AKB. The SQL generated by 
LIM and the CIDI for this query is: 

SELECT DISTINCT RV1.name, 
    RV2.latitude, 
    RV2.longitude 
FROM SEAPORTS RV1, GEOLOC RV2 
WHERE RV2.glc_cd = RV1.glc_cd 
 AND RV1.name = ‘Oz’ 

The value returned by this query is an object whose Loom definition is: 

(TELL 
 (:ABOUT SEAPORT59253 
  SEAPORT 
  (LON 98.6) 
  (LAT 3.14159) 
  (PRIMARY-PORT-NAME “Oz”))) 

7. Status 

Our current system is implemented in Lucid Common Lisp and runs on a SUN SPARCstation 2. LIM uses both the 
CIDI [11] and the Loom knowledge representation language [10]. The CIDI uses one of several protocols to access 
Oracle databases on a remote server. LIM can be used either in a stand-alone Lisp image, or via a client-server 
architecture. 
The present released version of LIM supports all definition and retrieval operations, as well as update of SMKB 
concepts and simple View-Concepts, and basic Meta-View-Concept functionality. The present development version 
of LIM includes the basic functionality of update of complex View-Concepts (i.e., those requiring joins); this version 
should be released by the time of the publication of this paper. 
Several other participants in the ARPI — including ISI, ISX, UCLA, MITRE, and BBN — are presently using LIM. 
All of these are using LIM internally as a stand-along Lisp image, but most are also using LIM via a client-server 
architecture from a remote site, typically accessing one or more servers at Unisys.  
In addition, groups at ISI and UCLA have integrated LIM with SIMS [1,2] and CoBASE [8]; the combined systems 
provide integration of access to multiple sources, approximate queries and answers, and fault tolerant knowledge 
base access to databases. The LIM/CoBASE/SIMS system has been used in both local-Lisp-image and client/server 
realizations; the ultimate objective of the joint project is to have a fully-distributed, multi-database system in 
operation. 

8. Conclusion 

We have described a View-Concept model which uses a knowledge representation language, Loom, to define the 
semantic schema of a database. This definition has two levels, each of which is of utility to a knowledge-based 
application. Both are based on a verbatim model of the database; for legacy databases, this can be generated 
automatically from the database schema, and can be used by any knowledge-based application which would assist a 
knowledge base administrator in the development of the semantic mapping layer (i.e., a knowledge-based semantic 
schema). 
The semantic mapping layer defines the relevant concepts supported by the database domain; in our current 
knowledge bases, the semantic mapping layer adds semantic types to the automatically-generated schema model. We 
envision additional information in the semantic mapping layer, including composites of database objects which form 
larger conceptual structures. 



Finally, the View-Concept model includes an application-specific layer that defines the mapping between an 
application domain’s conceptual structures and the semantic definition of database concepts. We believe that the 
structured approach embodied in the View-Concept model significantly elucidates the knowledge-base-to-database 
interface problem. Further, we expect that grounding the implementation in the CIDI will support reasonable 
performance. 
Our preliminary implementation includes algorithms for properly defining objects to determine retrievability and 
updatability, as well as retrievals against a database. In the coming year, we will be developing a more sophisticated 
application for the military transportation logistics domain using LIM. We expect feedback from this experience 
primarily to concern the completeness of the application knowledge base, and to give us valuable performance data. 
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